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Background (1)
Processor trends: 

• Many core: 
 Intel Knights Landing (KNL): 60~72core

• Wide SIMD
AVX-2 (256-bit); Intel Xeon E5 v4 (Broadwell)
AVX512 (512-bit); Intel KNL, Xeon E5 v5 (Skylake)

No program compatibility between different 
SIMD length

• Re-compile is required between AVX-2 and AVX512
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Background (2)
ARM Scalable Vector Extension (SVE)

• Vector Length Agnostic : programming 
independent of vector length
Same binaries run on different vector length environment.

• Support 128bit～2048bit SIMD
Each processor may support different vector length
Post-K processor announced to support 512bit.
SVE instructions don’t have vector length information, but 

refer the value of LEN implicitly.
LEN is in system register, that specifies current vector 

length
LEN=1:128bit, 2:256bit, 4:512bit, 8:1024bit, 16:2048bit
LEN can be changed by kernel call.
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Vector length agnostic programming
ex ) for (int i = 0; i < N; i++)

y[i] = 3.0 * x[i] + y[i];

fmov d2, 3.0e+0

mov x0, 0 // int i

.L2:

ldr d0, [x2, x0]

ldr d1, [x1, x0]

fmadd d0, d0, d2, d1

str d0, [x1, x0]

add     x0, x0, 8 // i++

cmp x0, 1024 // i < N?

bne .L2

fmov z0.d, #3.00000000

whilelo p0.d, xzr, x9 // 0 < N?

.LBB0_1:

ld1d    z1.d, p0/z, [x10, x8, lsl #3]

ld1d    z2.d, p0/z, [x11, x8, lsl #3]

fmad z1.d, p0/m, z0.d, z2.d

st1d    z1.d, p1, [x11, x8, lsl #3]

incd x8 // i+=(# of elements)

whilelo p1.d, x8, x9 // i < N?

b.first .LBB0_1 // p0[0] is true︖
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Scalar SVE

This SVE code correctly runs for any N iterations, 
even if N is not the multiple of vector elements. 

This code runs with 
any vector length
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SVE | WHILELO
• WHILELO generate a predicate vector
• ex) whilelo p1.d, x8, x9
When loop continue

When loop termination
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Our research agenda
How different is the performance depending on the  
vector length ?

• SVE is very useful because vector length agnostic 
programming enables to run same binaries on different 
vector length.

• Wide FPU improves peak performance but it is trivial and 
is trade-off with amount of hardware resources. 

We evaluate effects of vector length under almost 
same amount of hardware resources.

• Compare different vector length (512bit and 1024bit)
• Fixed following resources, those are the major hardware 

resources for WIDE SIMD.
• FPU resources
• Register resources
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512bit fully-pipelined FPU

How to keep resource size the same?

a) 512bit b) 1024bit
512bit fully-pipelined FPU

512bit fully-pipelined FPU
FPU

Issue every cycle Issue every two cycles
<- same hardware resources ->
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1024bit half throughput 
FPU

=

512bit fully-pipelined FPU

<- same throughput ->
We can control the amount of hardware resources 
by the throughput.
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How to keep resource size the same?

a) 512bit b) 1024bit

Regs 512bit x 96 
words

1024bit x 48 words
half throughput

L1 cache should be also controlled the throughput
9REV-A@Cluster2017

Regs 512bit x 96 
words

512bit x 96 
words

Access: 1 cycle Access: 2 cycle

=<- same hardware resources ->

<- same throughput ->
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Gem5 simulator
• Processor simulator

• supports multiple ISA: Alpha, SPARC, x86, ARM
• CPU model

• Atomic: instruction level simulation
• O3: Out of Order pipeline simulation

• Can estimate execution cycles

• Development “gem5-sve”
• Atomic mode for SVE is provided by ARM Ltd., and 

we originally developed o3 mode for SVE.
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Gem5 | O3 pipeline
• Based on Alpha21264

7 stages pipeline: Fetch, Decode, Rename, Issue, Execute, 
Write Back, Commit

• Parameter file
can specify latency and operation width for each pipeline 

stage, number of arithmetic units, latency of each instruction, 
etc.

• Control of Throughput of each execution unit
Original gem5 only supports fully-pipelined or not-pipelined.
We extend the control of execution unit to be issued every n 

cycle, which called 1/n throughput.
ex) 1024bit unit with TP=1/2

 realize same throughput and same hardware resources with 
512bit fully pipelined unit in gem5
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Gem5 | architecture parameters
• Based on O3_ARM_v7a.py that is preset parameter in gem5.
• Add instruction latency for SVE referred to NEON
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Hardware parameters
Clock Frequency 2.0GHz # of core 1
L1 Dcache, Icache size 32kB L2 cache size 2MB
Integer pipeline 2 Load/Store unit 1/1
Floating pipeline 2 Fetch width 3

OoO resource parameters
IQ (Reservation Station) 64 (←32)
ROB (Re-order Buffer) 64 (←48)
LQ (Load Queue) 16
SQ (Store Queue) 16
Physical Vector Register 96
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Evaluation Environment (1)
• In gem5, bit width of execution unit and register file 

set to the vector length, so we control by throughput. 
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vector length LEN=4 
(512bit)

LEN=8 
(1024bit)

FPU throughput 512bit / cycle
x 2 pipe

1024bit / 2cycle
x 2 pipe

L1 thoughput 512bit / cycle 1024bit / 2cycle
L2 thoughput 256bit / cycle →

Number of 
registers

512bit x 96 1024bit x 48

(architecture 
registers)

512bit x 32 1024bit x 32

(rename 
registers)

512bit x 64 1024bit x 16

vector length LEN=4 
(512bit)

LEN=8 
(1024bit)

LEN=8(x2) 
(1024bit)

FPU 
throughput

512bit / cycle
x 2 pipe

1024bit / 2cycle
x 2 pipe

→

L1 throughput 512bit / cycle 1024bit / 2cycle →
L2 throughput 256bit / cycle → →

Number of 
registers

512bit x 96 1024bit x 48 1024bit x 96

(architecture 
registers)

512bit x 32 1024bit x 32 →

(rename 
registers)

512bit x 64 1024bit x 16 1024bit x 64
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Evaluation Environment (2)
Compiler

• ARM clang version 1.1 (build number 15), -Ofast
• Prototype compiler for SVE

Evaluation kernels
• Stream Triad: N=25600 on L2

 L2 throughput intensive 
• N-body: N=512 on L1

 Computation intensive , long instruction dependency
• Matrix multiply: N=256 on L2

Theoretically computation intensive but current optimization 
is yet L1 throughput intensive 

We use same binaries for different vector length
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Fa
st

er

matmul

They are almost same 
because triad is L2 
throughput intensive 

• LEN=8 is slower than LEN=4
• LEN=8(x2) is faster than 

LEN=4

Discussion
Why LEN=8 and LEN=8(x2) performance are different ?
Why LEN=8(x2) is faster than LEN=4 while both FPU 
throughputs are the same?
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Fa
st

er

nbody
LEN=4 has no difference

LEN=8 becomes faster when the number of 
registers is increased

What is the bottleneck in O3 resources?
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What is the bottleneck in O3 resources?
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LEN Reg Ratio IQFull ROBFull LQFull SQFull RegFull
LEN=4 1.00 0 118242 30 0 0

1.25 0 118242 30 0 0
1.50 0 118242 30 0 0
1.75 0 118242 30 0 0
2.00 0 118242 30 0 0

LEN=8 1.00 0 0 0 0 116868
1.25 0 0 0 0 49671
1.50 0 3 56 0 57290
1.75 0 3148 60 0 64852
2.00 0 61151 86 0 0

We checked resource-full cycles in execution.
• LEN=4 has no RegFull cycles, so changing Register size has no effect.
• LEN=8 with small registers has many RegFull cycles, so performance 

is degraded, but LEN=8 with enough registers has no RegFull cycles, 
and performance is improved. nbody
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LEN=8 resource balance was bad
to get good performance, LEN=8 will have enough registers.



FPU utilization

• In matmul, the utilization with LEN=4 is only 
10%,  so there is many room for improvement 
even if LEN=8 uses twice cycles on FPU.

• In nbody, the utilization with LEN=4 is about 
50%, there is also room for improvement.

• However both kernels have not been fully 
optimized yet, so we need re-evaluate using 
fully optimized version.
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efficiency LEN=4 LEN=8(x2)
Matmul 10% 17%
Nbody 52% 93%
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Conclusion
• Wide vector size over FPU element size will 

improve performance if there are enough 
rename registers and the utilization of FPU has 
room for improvement.

• But our evaluation is preliminary one, and 
many future works remains.
We should evaluate other O3 resources, such as reorder buffer and 

reservation station, effects on performance.
We should evaluate fully optimized programs.
We should use architecture parameters for HPC, such as fetch width, 

number of load units, etc.
We should evaluate more and larger programs.
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