
Preliminary Performance Evaluation
of Application Kernels

using ARM SVE with Multiple Vector Lengths

Y. Kodama, T. Odajima, M. Matsuda,
M. Tsuji, J. Lee and M. Sato

RIKEN AICS
(Advanced Institute for Computational Science)

Outline
• Background and our research agenda

• Overview of SVE
• Evaluation Environment

• Gem5 simulator
• Architectural parameters
• Evaluated programs

• Evaluation Results
• Discussion
• Conclusion

2017/9/5 2REV-A@Cluster2017

Background (1)
Processor trends:

• Many core:
 Intel Knights Landing (KNL): 60~72core

• Wide SIMD
AVX-2 (256-bit); Intel Xeon E5 v4 (Broadwell)
AVX512 (512-bit); Intel KNL, Xeon E5 v5 (Skylake)

No program compatibility between different
SIMD length

• Re-compile is required between AVX-2 and AVX512

2017/9/5 3REV-A@Cluster2017

Background (2)
ARM Scalable Vector Extension (SVE)

• Vector Length Agnostic : programming
independent of vector length
Same binaries run on different vector length environment.

• Support 128bit～2048bit SIMD
Each processor may support different vector length
Post-K processor announced to support 512bit.
SVE instructions don’t have vector length information, but

refer the value of LEN implicitly.
LEN is in system register, that specifies current vector

length
LEN=1:128bit, 2:256bit, 4:512bit, 8:1024bit, 16:2048bit
LEN can be changed by kernel call.

2017/9/5 4REV-A@Cluster2017

Vector length agnostic programming
ex) for (int i = 0; i < N; i++)

y[i] = 3.0 * x[i] + y[i];

fmov d2, 3.0e+0

mov x0, 0 // int i

.L2:

ldr d0, [x2, x0]

ldr d1, [x1, x0]

fmadd d0, d0, d2, d1

str d0, [x1, x0]

add x0, x0, 8 // i++

cmp x0, 1024 // i < N?

bne .L2

fmov z0.d, #3.00000000

whilelo p0.d, xzr, x9 // 0 < N?

.LBB0_1:

ld1d z1.d, p0/z, [x10, x8, lsl #3]

ld1d z2.d, p0/z, [x11, x8, lsl #3]

fmad z1.d, p0/m, z0.d, z2.d

st1d z1.d, p1, [x11, x8, lsl #3]

incd x8 // i+=(# of elements)

whilelo p1.d, x8, x9 // i < N?

b.first .LBB0_1 // p0[0] is true︖

2017/9/5

Scalar SVE

This SVE code correctly runs for any N iterations,
even if N is not the multiple of vector elements.

This code runs with
any vector length

5REV-A@Cluster2017

SVE | WHILELO
• WHILELO generate a predicate vector
• ex) whilelo p1.d, x8, x9
When loop continue

When loop termination

2017/9/5

1 1 1 1 1 1 1 1p1.d

x8+7 x8+6 x8+5 x8+4 x8+3 x8+2 x8+1 x8
<
x9

<
x9

<
x9

<
x9

<
x9

<
x9

<
x9

<
x9

0 0 0 0 1 1 1 1p1.d

x8+7 x8+6 x8+5 x8+4 x8+3 x8+2 x8+1 x8
<
x9

<
x9

<
x9

<
x9

=
x9

>
x9

>
x9

>
x9

6REV-A@Cluster2017

Our research agenda
How different is the performance depending on the
vector length ?

• SVE is very useful because vector length agnostic
programming enables to run same binaries on different
vector length.

• Wide FPU improves peak performance but it is trivial and
is trade-off with amount of hardware resources.

We evaluate effects of vector length under almost
same amount of hardware resources.

• Compare different vector length (512bit and 1024bit)
• Fixed following resources, those are the major hardware

resources for WIDE SIMD.
• FPU resources
• Register resources

2017/9/5 7REV-A@Cluster2017

2017/9/5

512bit fully-pipelined FPU

How to keep resource size the same?

a) 512bit b) 1024bit
512bit fully-pipelined FPU

512bit fully-pipelined FPU
FPU

Issue every cycle Issue every two cycles
<- same hardware resources ->

8REV-A@Cluster2017

1024bit half throughput
FPU

=

512bit fully-pipelined FPU

<- same throughput ->
We can control the amount of hardware resources
by the throughput.

2017/9/5

How to keep resource size the same?

a) 512bit b) 1024bit

Regs 512bit x 96
words

1024bit x 48 words
half throughput

L1 cache should be also controlled the throughput
9REV-A@Cluster2017

Regs 512bit x 96
words

512bit x 96
words

Access: 1 cycle Access: 2 cycle

=<- same hardware resources ->

<- same throughput ->

Outline
• Background and our research agenda

• Overview of SVE
• Evaluation Environment

• Gem5 simulator
• Architectural parameters
• Evaluated programs

• Evaluation Results
• Discussion
• Conclusion

2017/9/5 10REV-A@Cluster2017

Gem5 simulator
• Processor simulator

• supports multiple ISA: Alpha, SPARC, x86, ARM
• CPU model

• Atomic: instruction level simulation
• O3: Out of Order pipeline simulation

• Can estimate execution cycles

• Development “gem5-sve”
• Atomic mode for SVE is provided by ARM Ltd., and

we originally developed o3 mode for SVE.

2017/9/5 11REV-A@Cluster2017

Gem5 | O3 pipeline
• Based on Alpha21264

7 stages pipeline: Fetch, Decode, Rename, Issue, Execute,
Write Back, Commit

• Parameter file
can specify latency and operation width for each pipeline

stage, number of arithmetic units, latency of each instruction,
etc.

• Control of Throughput of each execution unit
Original gem5 only supports fully-pipelined or not-pipelined.
We extend the control of execution unit to be issued every n

cycle, which called 1/n throughput.
ex) 1024bit unit with TP=1/2

 realize same throughput and same hardware resources with
512bit fully pipelined unit in gem5

2017/9/5 12REV-A@Cluster2017

Gem5 | architecture parameters
• Based on O3_ARM_v7a.py that is preset parameter in gem5.
• Add instruction latency for SVE referred to NEON

2017/9/5

Hardware parameters
Clock Frequency 2.0GHz # of core 1
L1 Dcache, Icache size 32kB L2 cache size 2MB
Integer pipeline 2 Load/Store unit 1/1
Floating pipeline 2 Fetch width 3

OoO resource parameters
IQ (Reservation Station) 64 (←32)
ROB (Re-order Buffer) 64 (←48)
LQ (Load Queue) 16
SQ (Store Queue) 16
Physical Vector Register 96

13REV-A@Cluster2017

Evaluation Environment (1)
• In gem5, bit width of execution unit and register file

set to the vector length, so we control by throughput.

2017/9/5

vector length LEN=4
(512bit)

LEN=8
(1024bit)

FPU throughput 512bit / cycle
x 2 pipe

1024bit / 2cycle
x 2 pipe

L1 thoughput 512bit / cycle 1024bit / 2cycle
L2 thoughput 256bit / cycle →

Number of
registers

512bit x 96 1024bit x 48

(architecture
registers)

512bit x 32 1024bit x 32

(rename
registers)

512bit x 64 1024bit x 16

vector length LEN=4
(512bit)

LEN=8
(1024bit)

LEN=8(x2)
(1024bit)

FPU
throughput

512bit / cycle
x 2 pipe

1024bit / 2cycle
x 2 pipe

→

L1 throughput 512bit / cycle 1024bit / 2cycle →
L2 throughput 256bit / cycle → →

Number of
registers

512bit x 96 1024bit x 48 1024bit x 96

(architecture
registers)

512bit x 32 1024bit x 32 →

(rename
registers)

512bit x 64 1024bit x 16 1024bit x 64

14REV-A@Cluster2017

Evaluation Environment (2)
Compiler

• ARM clang version 1.1 (build number 15), -Ofast
• Prototype compiler for SVE

Evaluation kernels
• Stream Triad: N=25600 on L2

 L2 throughput intensive
• N-body: N=512 on L1

 Computation intensive , long instruction dependency
• Matrix multiply: N=256 on L2

Theoretically computation intensive but current optimization
is yet L1 throughput intensive

We use same binaries for different vector length

2017/9/5 15REV-A@Cluster2017

Outline
• Background and our research agenda
• Overview of SVE

• Vector length agnostic programming
• Evaluation Environment

• Gem5 simulator
• Architectural parameters
• Evaluated programs

• Evaluation Results
• Discussion
• Conclusion
2017/9/5 16REV-A@Cluster2017

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

triad nbody dgemm

Re
la

tiv
e

Ex
ec

ut
io

n
Ti

m
e

LEN=4 LEN=8 LEN=8 (x2)

Evaluation Results

2017/9/5

Fa
st

er

matmul

They are almost same
because triad is L2
throughput intensive

• LEN=8 is slower than LEN=4
• LEN=8(x2) is faster than

LEN=4

Discussion
Why LEN=8 and LEN=8(x2) performance are different ?
Why LEN=8(x2) is faster than LEN=4 while both FPU
throughputs are the same?

17REV-A@Cluster2017

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 1.25 1.5 1.75 2

Re
la

tiv
e

Ex
ec

ut
io

n
Ti

m
e

Physical Register Ratio

LEN=4 LEN=8

Effects of # of registers

2017/9/5

Fa
st

er

nbody
LEN=4 has no difference

LEN=8 becomes faster when the number of
registers is increased

What is the bottleneck in O3 resources?

18REV-A@Cluster2017

What is the bottleneck in O3 resources?

2017/9/5

LEN Reg Ratio IQFull ROBFull LQFull SQFull RegFull
LEN=4 1.00 0 118242 30 0 0

1.25 0 118242 30 0 0
1.50 0 118242 30 0 0
1.75 0 118242 30 0 0
2.00 0 118242 30 0 0

LEN=8 1.00 0 0 0 0 116868
1.25 0 0 0 0 49671
1.50 0 3 56 0 57290
1.75 0 3148 60 0 64852
2.00 0 61151 86 0 0

We checked resource-full cycles in execution.
• LEN=4 has no RegFull cycles, so changing Register size has no effect.
• LEN=8 with small registers has many RegFull cycles, so performance

is degraded, but LEN=8 with enough registers has no RegFull cycles,
and performance is improved. nbody

19REV-A@Cluster2017

LEN=8 resource balance was bad
to get good performance, LEN=8 will have enough registers.

FPU utilization

• In matmul, the utilization with LEN=4 is only
10%, so there is many room for improvement
even if LEN=8 uses twice cycles on FPU.

• In nbody, the utilization with LEN=4 is about
50%, there is also room for improvement.

• However both kernels have not been fully
optimized yet, so we need re-evaluate using
fully optimized version.

2017/9/5

efficiency LEN=4 LEN=8(x2)
Matmul 10% 17%
Nbody 52% 93%

20REV-A@Cluster2017

Conclusion
• Wide vector size over FPU element size will

improve performance if there are enough
rename registers and the utilization of FPU has
room for improvement.

• But our evaluation is preliminary one, and
many future works remains.
We should evaluate other O3 resources, such as reorder buffer and

reservation station, effects on performance.
We should evaluate fully optimized programs.
We should use architecture parameters for HPC, such as fetch width,

number of load units, etc.
We should evaluate more and larger programs.

2017/9/5 21REV-A@Cluster2017

