
Hiroshi Nakashima
(ACCMS, Kyoto University)

Finding Regularity in Problems
with Irregularity

REV-A 2017: © 2016 H. Nakashima

Contents
 Players Lineup in HPC Games
 Regularity vs Irregularity with SIMD

 SIMD @ Intel and @ Kyoto U.
 Just One Example of Regular Data/Procedures
 Many Examples of Irregular Data/Procedures

 Regularity in Irregular Data
 An Idea to Make Sparse Matrices More Regular

 Regularity in PIC
 How to Make Operations on Particles Regular
 How to Make Sets of Particles Regular

 Conclusions

Players Lineup in HPC Games
 Correctness

Without it we cannot earn anything.
 Complexity

O(N2) cannot defeat O(N) in HPC with N>>1.
 Parallelism

Absence of this veteran makes your supercomputer
as slow as a smartphone.

 Locality
High memory wall increases its importance in HPC.

 Regularity
This rookie now controls the game by its ability to
up/down the score by a factor of 10x.

REV-A 2017: © 2016 H. Nakashima●

●

SIMD: Hometown of Regularity
REV-A 2017: © 2016 H. Nakashima

+

a[i] a[i+7] b[i] b[i+7] c[i] c[i+7]

VRa

VRc

+ + + + + + +

VMOVUPD

VMOVUPD

VADDPD

 double a[],b[],c[];
for(i=0;i<n;i++) c[i]=a[i]+b[i];

SIMD: How Widen?
REV-A 2017: © 2016 H. Nakashima

1 2 4 8 16 32

AVX-512

AVX-2

IMCI

AVX

SSE2/3/4

SSE2/3 SIMD width FMA IPCNetBurst

Core / Nehalem / Westmere

Sandy Bridge / Ivy Bridge

KNC

KNL / Skylake

Haswell / Broadwell

DP-FLOP/cycle

 Intel’s SIMD Architecture

SIMD: How Working in Kyoto?
REV-A 2017: © 2016 H. Nakashima

Omni-Path (12.1GB/s•link, BB= 5.15TB/s)

InfiniBand FDR/EDR (6.8/12.1GB/s•link)

Camphor 2
XC40

Xeon Phi 7250 (KNL)
1.4GHz x 8 x 4 x 68 x 1 x 1800
= 5.48PFlops

230TB

Laurel 2
CS400 2800XT

Xeon E5-2695v4 (Broadwell)
2.1GHz x 4 x 4 x 18 x 2 x 850
= 1.03PFlops

Cinnamon 2
CS400 4840X

Xeon E7-8880v3 (Haswell)
2.3GHz x 4 x 4 x 18 x 4 x 16
= 0.04PFlops

Camellia
XC30

Xeon Phi 5250D (KNC)
Xeon E5-2670v2 (Ivy Bridge)

(1.1GHz x 8 x 2 x 68 x 1 +
2.5GHz x 4 x 2 x 10 x 1) x 482

= 0.58PFlops

ExaScaler
16+8PB

230TB

Storage

Regularity vs Irregularity
Simple Examples

 for(i=0;i<n;i++) c[i]=a[i]+b[i];
regular & fast

 for(i=0;i<n;i++) c[i]=a[xa[i]]+b[xb[i]];
irregular in RHS & slow even if xa[i]==xb[i]==i

 for(i=0;i<n;i++) c[xc[i]]=a[xa[i]]+b[xb[i]];
irregular in LHS & very slow even if vectorized

REV-A 2017: © 2016 H. Nakashima●

●

Regularity vs Irregularity
How Vectorized (1/2)

 By Intel 17.0.2 for KNL

REV-A 2017: © 2016 H. Nakashima

c[i]=a[i]+b[i] c[i]=
a[xa[i]]+b[xb[i]]

c[xc[i]]=
a[xa[i]]+b[xb[i]]

vmovups a[i]
vaddpd b[i]
vmovupd c[i]

vmovdqu xa[i]
vmovdqu xb[i]
vgatherdpd a[]
vgatherdpd b[]
vaddpd
vmovupd c[i]

vmovdqu xa[i]
vmovdqu xb[i]
vmovdqu xc[i]
vgatherdpd a[]
vgatherdpd b[]
vaddpd
vscatterdpd c[i]

 Overlap of a/b/c is in-
spected for vector-
ization if they are not
restrict-ed

 Two-way unrolled
further.

 a/b/c must be restrict-ed for vectorization.
 Has redundant instructions for unnecessary

masking (with ki=11...1) and zero-clear of
destination of gather (& scatter).

Regularity vs Irregularity
How Vectorized (2/2)

 for a[]+=b[]

REV-A 2017: © 2016 H. Nakashima

a[i]+=b[i] a[i]+=b[xb[i]] a[xa[i]]+=b[xb[i]]

vmovups a[i]
vaddpd b[i]
vmovupd a[i]

vmovdqu xb[i]
vmovups a[i]
vgatherdpd b[]
vaddpd
vmovupd a[i]

vmovdqu xb[i]
vgatherdpd b[]
vmovdqu xa[i]
vpconflictd
vgatherdpd a[]
vpmovzxdq
vptestmq
vaddp
kmovw
testl
je
conflict case
vscatterdpd a[i]

 ≈ c[]=a[]+b[]  ≈ c[]=a[]+b[]  Needs conflict check
in case that xa[] has
duplication.

Regularity vs Irregularity
How Fast & Slow

 64-core (&thread) execution on KNL

REV-A 2017: © 2016 H. Nakashima

0

50

100

150

200

250 5000

4000

3000

2000

1000

0 0

25

50

75

100

125 2500

2000

1500

1000

500

0

0

5

10

15

20

25 500

400

300

200

100

0

G
Fl

op
s

G
B

/s
ec

n = 800 x 64
(on L1)

n = 8000 x 64
(on L2)

n = 800000 x 64
A B C D E F

 A:c[i]=a[i]+b[i]
 B:c[i]=a[xa[i]]+b[xb[i]]
 C:c[xc[i]]=a[xa[i]]+b[xb[i]]
 D:a[i]+=b[i]
 E: a[i]+=b[xb[i]]
 F: a[xa[i]]+=b[xb[i]]
 Severe slowdown in on-cache cases

while almost-peak B/W is exerted in
off-cache case.

x5.8 x8.6

x2.6 x6.9
x3.2 x3.2

A B C D E F

x2.7 x5.0

x1.3 x1.5

x1.3 x1.6

xa[i]=xb[i]=xc[i]=i

Regularity vs Irregularity
Why so Slow

 On-Cache Case
 SIMD mechanism relies on wide access to a cache

line too heavily to perform a set of small-size
loads/stores for a gather/scatter efficiently.

 Short latency of L1 access does not allow to
coalesce multiple accesses of gather/scatter
effectively even when they targets on a single line.

Gather/scatter severely degrades the effect of our
effort of SIMD- and cache-aware implementation.
 SIMD-aware: x3.1 x2.2-x2.0 (for a[]+=b[])
 cache-aware: x5.9 x2.9-x1.4

c.f. SX-ACE’s ADB, software-controlled non-
coherent cache, is accessible in word-
granularity and has load-coalescing mechanism.

REV-A 2017: © 2016 H. Nakashima

Regularity vs Irregularity
Why not so Slow

 Off-Cache Case
 As far as gather/scatter accesses have reasonable

spatial locality, last-level cache (L2) effectively
coalesces multiple non-temporally-local accesses
into a single cache miss.

 Memory controller also effectively coalesces
cache-missing accesses from many cores into a
series of not-so-random accesses to memory
(MCDRAM) to exploit its large bandwidth.

Strongly discourage people from improving
access locality or eliminating indirection because
one single effort is not very effective.
 only improving locality: x1.4 (for a[]+=b[])
 only eliminating indirection: x1.6
 both: x9.4 >> 1.4 x 1.6

REV-A 2017: © 2016 H. Nakashima

Regularity vs Irregularity
Other Sources of Irregularity

 for(a=ah,b=bh,c=ch; a&&b&&c;
 a=a->n,b=b->n,c=c->n) c->v=a->v+b->v;

 Even with a smart complier, you have a scalar
pointer chasing followed by a vectorized
gather/scatter.

 for(i=0;i<n;i++)
 if (a[i]<0) c[i]=some_func(a[i],b[i]);
 else c[i]=a[i]+b[i];

 Even with a smart complier, you could have non-
vectorized code instead of vectorized else-part
for the cases of a[i]>=0 for all lanes even if a[i]
is usually (or always) non-negative.

REV-A 2017: © 2016 H. Nakashima

Regularity: How to Achieve?
 Fundamentals

 Use arrays instead of linked lists.
 Eliminate indexing arrays/functions.
 Eliminate unbalanced conditionals.

 In Addition
 Show the regularity apparently to your compiler.
 Combine cache-awareness to make regularization

really effective.
 However ...

 How can I regularize my program which operates
on irregular data such as sparse matrices and
sets of objects?

REV-A 2017: © 2016 H. Nakashima

Regularity in Irregular Data:
Sparse Matrix in CRS

 CRS Matrix Vector Multiply y=A*x
for(i=0;i<n;i++){ y[i]=0;
for(j=A.row[i];j<A.row[i+1];j++)
y[i]+=A.val[j]*x[A.col[j]];

}
 Gather on x[] is inefficient.
 A.row[i+1]-A.row[i] is usually small (up to a

few tens) to make the overhead of prologue &
epilogue large. (c.f. fixing it with zero-padding may
improve performance.)

 Cannot We Find Regularity?
 If A has many k-diagonal sequences;
 We may represent A as a set of

k-diagonal sequences (plus
exceptional non-zeros).

REV-A 2017: © 2016 H. Nakashima

gather

exceptionally
≠ 0 = 0

Regularity in Irregular Data:
Sparse Matrix in k-Diagonal Form

 k-Diagonal Matrix Vector Multiply y=A*x
for(i=0;i<n;i++) y[i]=0;
for(d=0;i<A.ndiag;d++){

for(i=A.drow[d],j=A.dcol[d],k=A.dval[d];
k<A.dval[d+1]; i++,j++,k++)

y[i]+=A.val[k]*x[j];
} // then operate on exceptional non-zeros
 drow[d],dcol[d],dval[d]:

row, column and index of val[] of the head of the
d-th k-diagonal sequence.

 Can We Find such Sequences?
 Easy for cubic structured meshes.
 How can we find them in unstructured

meshes of triangles or tetrahedrons?

REV-A 2017: © 2016 H. Nakashima

exceptionally
≠ 0 = 0

Regularity in Irregular Data:
Finding k-Diagonal Sequences

 Regularity?

 Yes!! (though No in general)

REV-A 2017: © 2016 H. Nakashima

i
i + k

i + 7

i + k + 6

±1-diagonal
±k-diagonal
±(k-1)-diagonal

●

●

Regularity in Irregular Data:
How Efficient ?

REV-A 2017: © 2016 H. Nakashima

 y=A*x on KNL with 64 cores (threads)

0

10

20

30

40

50

60

70

80
stencil k-diagonal CRS

G
Fl

op
s

100M vector of
2D triangular mesh

16M vector of
3D cubic mesh

x3.3 x3.4

Regularity in PIC Simulation:
Fundamental Irregularity in PIC

 For each p at xp in a cell whose
vertices are at δxp ;
 Update vp by Lorentz force determined by E and B

at δxp, and then update xp by vp.
 Add the contribution of p’s motion to J at δxp.
 E[][][], B[][][], J[][][] are accessed by

xp +{0,1}3 with gather/scatter.

REV-A 2017: © 2016 H. Nakashima

)(),(pp xBxE δδ))((pp vxJ −δ)(pxJ δ
ΩΩ ~,

Regularity in PIC Simulation:
Regularize by Particle Binning

 Let each cell c have the set (bin) of all
particles in it.

 Scalarize E/B/J accessed by all p in c.

for(c in cells){
{sE}=Earound(c); {sB}=Baround(c);
for(p in c) v[p]+=lorentz(p,{sE},{sB});
{sJ}=0;
for(p in c)
{{sJ}+=scatter(p); x[p]+=v[p];}
Jaround(c)+={sJ};
for(p in c) migrate(p);

}
for(c in cells){
{sJ}=0; for(p in c) {sJ}+=scatter(p);
Jaround(c)+={sJ};

}

REV-A 2017: © 2016 H. Nakashima

If x[] and v[] are
simple arrays,
vectorized well
without gather/
scatter of E/B/J.

Regularity in PIC Simulation:
Regularized Bin Management

 Instead of Irregular Structure/Procedure
 Such as linked list or batched radix sort.

 On-the-Fly Sort on Gapped Arrays

REV-A 2017: © 2016 H. Nakashima

c1 c2

xp

vp

c1's bin c2's bingap

1D-SOA of
particles

3D-AOS
of cells

 Record direction dp∈{-1,0,1}3 of
inter-cell migration for all p in c.

 Skip p s.t. dp =(0,0,0).
 Migrate p s.t. dp ≠(0,0,0) to the gap

of the destination bin.
 Fill the vacancy by the last

particle of c.
 Migration cannot be vectorized but

for a few particles.
 Work efficiently unless overflow.

●

●

Regularity in PIC Simulation:
Bin Overflow: Cost for Regularity

 If a gap is exhausted
 Move overflown particle into a buffer and process

all particles in the buffer without binning, until e.g.
the cumulative processing cost becomes too large.

 Reduce frequency of bin rearrangement.
 When no longer we can keep particles

in the buffer
 Resize gaps not only to enlarge them for cells

(nearly) overflown but also to keep them as large
as possible.

 Cope with oscillatory repletion/depletion of bins.
 Perform in-place multithreaded SIMD-vectorizable

shift of bins according to the new gap sizes.

REV-A 2017: © 2016 H. Nakashima

Regularity in PIC Simulation:
How Efficient ?

 1-node
(106 p/s)

 Multi-node
(106 p/s·node)

REV-A 2017: © 2016 H. Nakashima

peak
TFlops

binning
yes no

XC40 (KNL) 3.05 1179 ---
XC30 (Haswell) 1.03 590 291
XC30 (KNC) 1.01 391 57
XE6 (Abu Dhabi) 0.32 --- 123

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64
0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64

XC40 (KNL)

XC30 (Haswell)

XC30 (KNC)

XE6

Uniform Distribution

Very Congested
Distribution

Conclusions
 What I’ve talked

 Importance of regularity for recent processors
having wide SIMD mechanisms.

 How to find and exploit in-practice regularity in
in-general irregular data/procedures.

 What I haven’t talked
 How large effort we have to make for the

exploitation of in-practice regularity.
 70+% of my PIC code of 2,622 C lines are for non-kernel

operations for regularization (e.g., overflow handling).
 We need regularization libraries to manipulate in-

general irregular data (not their structures), i.e.,
 Sparse matrices rather than CRS form of them.
 Sets rather than their linked-list representation.

REV-A 2017: © 2016 H. Nakashima

REV-A 2017: © 2016 H. Nakashima

backup
REV-A 2017: © 2016 H. Nakashima

±k 0 1 2 3 4 5 6 7 8 except. ≠0

length
(except.=0)

47 45(9) 02 05 07 09 05(0)
11(1)

25(1) 14 6

	Finding Regularity in Problems with Irregularity
	Contents
	Players Lineup in HPC Games
	SIMD: Hometown of Regularity
	SIMD: How Widen?
	SIMD: How Working in Kyoto?
	Regularity vs Irregularity�Simple Examples
	Regularity vs Irregularity�How Vectorized (1/2)
	Regularity vs Irregularity�How Vectorized (2/2)
	Regularity vs Irregularity�How Fast & Slow
	Regularity vs Irregularity�Why so Slow
	Regularity vs Irregularity�Why not so Slow
	Regularity vs Irregularity�Other Sources of Irregularity
	Regularity: How to Achieve?
	Regularity in Irregular Data:�Sparse Matrix in CRS
	Regularity in Irregular Data:�Sparse Matrix in k-Diagonal Form
	Regularity in Irregular Data:�Finding k-Diagonal Sequences
	Regularity in Irregular Data:�How Efficient ?
	Regularity in PIC Simulation:�Fundamental Irregularity in PIC
	Regularity in PIC Simulation:�Regularize by Particle Binning
	Regularity in PIC Simulation:�Regularized Bin Management
	Regularity in PIC Simulation:�Bin Overflow: Cost for Regularity
	Regularity in PIC Simulation:�How Efficient ?
	Conclusions
	スライド番号 25
	backup

