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Players Lineup in HPC Games
 Correctness

Without it we cannot earn anything.
 Complexity

O(N2) cannot defeat O(N) in HPC with N>>1.
 Parallelism

Absence of this veteran makes your supercomputer 
as slow as a smartphone.

 Locality
High memory wall increases its importance in HPC.

 Regularity
This rookie now controls the game by its ability to 
up/down the score by a factor of 10x.
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SIMD: Hometown of Regularity
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 double a[],b[],c[];
for(i=0;i<n;i++) c[i]=a[i]+b[i];



SIMD: How Widen?
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SIMD: How Working in Kyoto?
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Omni-Path (12.1GB/s•link, BB= 5.15TB/s)

InfiniBand FDR/EDR (6.8/12.1GB/s•link)

Camphor 2
XC40

Xeon Phi 7250 (KNL)
1.4GHz x 8 x 4 x 68 x 1 x 1800
= 5.48PFlops 

230TB

Laurel 2
CS400 2800XT 

Xeon E5-2695v4 (Broadwell)
2.1GHz x 4 x 4 x 18 x 2 x 850
= 1.03PFlops 

Cinnamon 2
CS400 4840X 

Xeon E7-8880v3 (Haswell)
2.3GHz x 4 x 4 x 18 x 4 x 16
= 0.04PFlops 

Camellia
XC30

Xeon Phi 5250D (KNC)
Xeon E5-2670v2 (Ivy Bridge)

(1.1GHz x 8 x 2 x 68 x 1 +
2.5GHz x 4 x 2 x 10 x 1) x 482

= 0.58PFlops 

ExaScaler
16+8PB             

230TB

Storage



Regularity vs Irregularity
Simple Examples

 for(i=0;i<n;i++) c[i]=a[i]+b[i];
regular & fast

 for(i=0;i<n;i++) c[i]=a[xa[i]]+b[xb[i]];
irregular in RHS & slow even if xa[i]==xb[i]==i

 for(i=0;i<n;i++) c[xc[i]]=a[xa[i]]+b[xb[i]];
irregular in LHS & very slow even if vectorized
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Regularity vs Irregularity
How Vectorized (1/2)

 By Intel 17.0.2 for KNL
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c[i]=a[i]+b[i] c[i]=
a[xa[i]]+b[xb[i]]

c[xc[i]]=
a[xa[i]]+b[xb[i]]

vmovups a[i]
vaddpd b[i]
vmovupd c[i]

vmovdqu xa[i]
vmovdqu xb[i]
vgatherdpd a[]
vgatherdpd b[]
vaddpd
vmovupd c[i]

vmovdqu xa[i]
vmovdqu xb[i]
vmovdqu xc[i]
vgatherdpd a[]
vgatherdpd b[]
vaddpd
vscatterdpd c[i]

 Overlap of a/b/c is in-
spected for vector-
ization if they are not 
restrict-ed

 Two-way unrolled 
further.

 a/b/c must be restrict-ed for vectorization.
 Has redundant instructions for unnecessary 

masking (with ki=11...1) and zero-clear of 
destination of gather (& scatter).



Regularity vs Irregularity
How Vectorized (2/2)

 for a[]+=b[]

REV-A 2017: © 2016  H. Nakashima

a[i]+=b[i] a[i]+=b[xb[i]] a[xa[i]]+=b[xb[i]]

vmovups a[i]
vaddpd b[i]
vmovupd a[i]

vmovdqu xb[i]
vmovups a[i]
vgatherdpd b[]
vaddpd
vmovupd a[i]

vmovdqu xb[i]
vgatherdpd b[]
vmovdqu xa[i]
vpconflictd
vgatherdpd a[]
vpmovzxdq
vptestmq
vaddp
kmovw
testl
je
conflict case
vscatterdpd a[i]

 ≈ c[]=a[]+b[]  ≈ c[]=a[]+b[]  Needs conflict check
in case that xa[] has 
duplication.



Regularity vs Irregularity
How Fast & Slow

 64-core (&thread) execution on KNL
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n = 800 x 64
(on L1)

n = 8000 x 64
(on L2)

n = 800000 x 64
A B C D E F

 A:c[i]=a[i]+b[i]
 B:c[i]=a[xa[i]]+b[xb[i]]
 C:c[xc[i]]=a[xa[i]]+b[xb[i]]
 D:a[i]+=b[i]
 E: a[i]+=b[xb[i]]
 F: a[xa[i]]+=b[xb[i]]
 Severe slowdown in on-cache cases 

while almost-peak B/W is exerted in 
off-cache case.

x5.8 x8.6

x2.6 x6.9
x3.2 x3.2

A B C D E F

x2.7 x5.0

x1.3 x1.5

x1.3 x1.6

xa[i]=xb[i]=xc[i]=i



Regularity vs Irregularity
Why so Slow

 On-Cache Case
 SIMD mechanism relies on wide access to a cache 

line too heavily to perform a set of small-size 
loads/stores for a gather/scatter efficiently.

 Short latency of L1 access does not allow to 
coalesce multiple accesses of gather/scatter 
effectively even when they targets on a single line.

Gather/scatter severely degrades the effect of our 
effort of SIMD- and cache-aware implementation.
 SIMD-aware: x3.1 x2.2-x2.0 (for a[]+=b[])
 cache-aware: x5.9 x2.9-x1.4

c.f. SX-ACE’s ADB, software-controlled non-
coherent cache, is accessible in word-
granularity and has load-coalescing mechanism.
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Regularity vs Irregularity
Why not so Slow

 Off-Cache Case
 As far as gather/scatter accesses have reasonable 

spatial locality, last-level cache (L2) effectively 
coalesces multiple non-temporally-local accesses 
into a single cache miss.

 Memory controller also effectively coalesces
cache-missing accesses from many cores into a 
series of not-so-random accesses to memory 
(MCDRAM) to exploit its large bandwidth.

Strongly discourage people from improving 
access locality or eliminating indirection because 
one single effort is not very effective.
 only improving locality: x1.4 (for a[]+=b[])
 only eliminating indirection: x1.6
 both: x9.4 >> 1.4 x 1.6
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Regularity vs Irregularity
Other Sources of Irregularity

 for(a=ah,b=bh,c=ch; a&&b&&c;
 a=a->n,b=b->n,c=c->n) c->v=a->v+b->v;

 Even with a smart complier, you have a scalar 
pointer chasing followed by a vectorized 
gather/scatter.

 for(i=0;i<n;i++)
 if (a[i]<0) c[i]=some_func(a[i],b[i]);
 else        c[i]=a[i]+b[i];

 Even with a smart complier, you could have non-
vectorized code instead of vectorized else-part 
for the cases of a[i]>=0 for all lanes even if a[i]
is usually (or always) non-negative.
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Regularity: How to Achieve?
 Fundamentals

 Use arrays instead of linked lists.
 Eliminate indexing arrays/functions.
 Eliminate unbalanced conditionals.

 In Addition
 Show the regularity apparently to your compiler.
 Combine cache-awareness to make regularization

really effective.
 However ...

 How can I regularize my program which operates 
on irregular data such as sparse matrices and 
sets of objects?
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Regularity in Irregular Data:
Sparse Matrix in CRS

 CRS Matrix Vector Multiply y=A*x
for(i=0;i<n;i++){ y[i]=0;
for(j=A.row[i];j<A.row[i+1];j++)
y[i]+=A.val[j]*x[A.col[j]];

}
 Gather on x[] is inefficient.
 A.row[i+1]-A.row[i] is usually small (up to a 

few tens) to make the overhead of prologue &
epilogue large. (c.f. fixing it with zero-padding may 
improve performance.)

 Cannot We Find Regularity?
 If A has many k-diagonal sequences;
 We may represent A as a set of

k-diagonal sequences (plus
exceptional non-zeros).
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gather

exceptionally
≠ 0 = 0



Regularity in Irregular Data:
Sparse Matrix in k-Diagonal Form

 k-Diagonal Matrix Vector Multiply y=A*x
for(i=0;i<n;i++) y[i]=0;
for(d=0;i<A.ndiag;d++){

for(i=A.drow[d],j=A.dcol[d],k=A.dval[d];
k<A.dval[d+1]; i++,j++,k++)

y[i]+=A.val[k]*x[j];
} // then operate on exceptional non-zeros
 drow[d],dcol[d],dval[d]:

row, column and index of val[] of the head of the 
d-th k-diagonal sequence.

 Can We Find such Sequences?
 Easy for cubic structured meshes.
 How can we find them in unstructured

meshes of triangles or tetrahedrons?
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exceptionally
≠ 0 = 0



Regularity in Irregular Data:
Finding k-Diagonal Sequences

 Regularity?

 Yes!! (though No in general)

REV-A 2017: © 2016  H. Nakashima

i
i + k

i + 7

i + k + 6

±1-diagonal
±k-diagonal
±(k-1)-diagonal

●

●



Regularity in Irregular Data:
How Efficient ?
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 y=A*x on KNL with 64 cores (threads)
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Regularity in PIC Simulation:
Fundamental Irregularity in PIC

 For each p at xp in a cell whose 
vertices are at δxp ;
 Update vp by Lorentz force determined by E and B

at δxp, and then update xp by vp.
 Add the contribution of p’s motion to J at δxp.
 E[][][], B[][][], J[][][] are accessed by

xp +{0,1}3 with gather/scatter.
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Regularity in PIC Simulation:
Regularize by Particle Binning

 Let each cell c have the set (bin) of all 
particles in it.

 Scalarize E/B/J accessed by all p in c.

for(c in cells){
{sE}=Earound(c); {sB}=Baround(c);
for(p in c) v[p]+=lorentz(p,{sE},{sB});
{sJ}=0;
for(p in c)
{{sJ}+=scatter(p); x[p]+=v[p];}
Jaround(c)+={sJ};
for(p in c) migrate(p);

}
for(c in cells){
{sJ}=0;  for(p in c) {sJ}+=scatter(p);
Jaround(c)+={sJ};

}
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If x[] and v[] are
simple arrays,
vectorized well
without gather/
scatter of E/B/J.



Regularity in PIC Simulation:
Regularized Bin Management

 Instead of Irregular Structure/Procedure
 Such as linked list or batched radix sort.

 On-the-Fly Sort on Gapped Arrays
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c1 c2

xp

vp

c1's bin c2's bingap

1D-SOA of
particles

3D-AOS
of cells

 Record direction dp∈{-1,0,1}3 of 
inter-cell migration for all p in c.

 Skip p s.t. dp =(0,0,0).
 Migrate p s.t. dp ≠(0,0,0) to the gap 

of the destination bin.
 Fill the vacancy by the last

particle of c.
 Migration cannot be vectorized but 

for a few particles.
 Work efficiently unless overflow.
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Regularity in PIC Simulation:
Bin Overflow: Cost for Regularity

 If a gap is exhausted
 Move overflown particle into a buffer and process 

all particles in the buffer without binning, until e.g. 
the cumulative processing cost becomes too large.

 Reduce frequency of bin rearrangement.
 When no longer we can keep particles 

in the buffer
 Resize gaps not only to enlarge them for cells 

(nearly) overflown but also to keep them as large 
as possible.

 Cope with oscillatory repletion/depletion of bins.
 Perform in-place multithreaded SIMD-vectorizable

shift of bins according to the new gap sizes.
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Regularity in PIC Simulation:
How Efficient ?

 1-node
(106 p/s)

 Multi-node
(106 p/s·node)
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peak
TFlops

binning
yes no

XC40 (KNL) 3.05 1179 ---
XC30 (Haswell) 1.03 590 291
XC30 (KNC) 1.01 391 57
XE6 (Abu Dhabi) 0.32 --- 123
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Conclusions
 What I’ve talked

 Importance of regularity for recent processors 
having wide SIMD mechanisms.

 How to find and exploit in-practice regularity in   
in-general irregular data/procedures.

 What I haven’t talked
 How large effort we have to make for the 

exploitation of in-practice regularity.
 70+% of my PIC code of 2,622 C lines are for non-kernel 

operations for regularization (e.g., overflow handling).
 We need regularization libraries to manipulate in-

general irregular data (not their structures), i.e., 
 Sparse matrices rather than CRS form of them.
 Sets rather than their linked-list representation.
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backup
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±k 0 1 2 3 4 5 6 7 8 except. ≠0

length
(except.=0)

47 45(9) 02 05 07 09 05(0)
11(1)

25(1) 14 6
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