
Hiroshi Nakashima
(ACCMS, Kyoto University)

Finding Regularity in Problems
with Irregularity

REV-A 2017: © 2016 H. Nakashima

Contents
 Players Lineup in HPC Games
 Regularity vs Irregularity with SIMD

 SIMD @ Intel and @ Kyoto U.
 Just One Example of Regular Data/Procedures
 Many Examples of Irregular Data/Procedures

 Regularity in Irregular Data
 An Idea to Make Sparse Matrices More Regular

 Regularity in PIC
 How to Make Operations on Particles Regular
 How to Make Sets of Particles Regular

 Conclusions

Players Lineup in HPC Games
 Correctness

Without it we cannot earn anything.
 Complexity

O(N2) cannot defeat O(N) in HPC with N>>1.
 Parallelism

Absence of this veteran makes your supercomputer
as slow as a smartphone.

 Locality
High memory wall increases its importance in HPC.

 Regularity
This rookie now controls the game by its ability to
up/down the score by a factor of 10x.

REV-A 2017: © 2016 H. Nakashima●

●

SIMD: Hometown of Regularity
REV-A 2017: © 2016 H. Nakashima

+

a[i] a[i+7] b[i] b[i+7] c[i] c[i+7]

VRa

VRc

+ + + + + + +

VMOVUPD

VMOVUPD

VADDPD

 double a[],b[],c[];
for(i=0;i<n;i++) c[i]=a[i]+b[i];

SIMD: How Widen?
REV-A 2017: © 2016 H. Nakashima

1 2 4 8 16 32

AVX-512

AVX-2

IMCI

AVX

SSE2/3/4

SSE2/3 SIMD width FMA IPCNetBurst

Core / Nehalem / Westmere

Sandy Bridge / Ivy Bridge

KNC

KNL / Skylake

Haswell / Broadwell

DP-FLOP/cycle

 Intel’s SIMD Architecture

SIMD: How Working in Kyoto?
REV-A 2017: © 2016 H. Nakashima

Omni-Path (12.1GB/s•link, BB= 5.15TB/s)

InfiniBand FDR/EDR (6.8/12.1GB/s•link)

Camphor 2
XC40

Xeon Phi 7250 (KNL)
1.4GHz x 8 x 4 x 68 x 1 x 1800
= 5.48PFlops

230TB

Laurel 2
CS400 2800XT

Xeon E5-2695v4 (Broadwell)
2.1GHz x 4 x 4 x 18 x 2 x 850
= 1.03PFlops

Cinnamon 2
CS400 4840X

Xeon E7-8880v3 (Haswell)
2.3GHz x 4 x 4 x 18 x 4 x 16
= 0.04PFlops

Camellia
XC30

Xeon Phi 5250D (KNC)
Xeon E5-2670v2 (Ivy Bridge)

(1.1GHz x 8 x 2 x 68 x 1 +
2.5GHz x 4 x 2 x 10 x 1) x 482

= 0.58PFlops

ExaScaler
16+8PB

230TB

Storage

Regularity vs Irregularity
Simple Examples

 for(i=0;i<n;i++) c[i]=a[i]+b[i];
regular & fast

 for(i=0;i<n;i++) c[i]=a[xa[i]]+b[xb[i]];
irregular in RHS & slow even if xa[i]==xb[i]==i

 for(i=0;i<n;i++) c[xc[i]]=a[xa[i]]+b[xb[i]];
irregular in LHS & very slow even if vectorized

REV-A 2017: © 2016 H. Nakashima●

●

Regularity vs Irregularity
How Vectorized (1/2)

 By Intel 17.0.2 for KNL

REV-A 2017: © 2016 H. Nakashima

c[i]=a[i]+b[i] c[i]=
a[xa[i]]+b[xb[i]]

c[xc[i]]=
a[xa[i]]+b[xb[i]]

vmovups a[i]
vaddpd b[i]
vmovupd c[i]

vmovdqu xa[i]
vmovdqu xb[i]
vgatherdpd a[]
vgatherdpd b[]
vaddpd
vmovupd c[i]

vmovdqu xa[i]
vmovdqu xb[i]
vmovdqu xc[i]
vgatherdpd a[]
vgatherdpd b[]
vaddpd
vscatterdpd c[i]

 Overlap of a/b/c is in-
spected for vector-
ization if they are not
restrict-ed

 Two-way unrolled
further.

 a/b/c must be restrict-ed for vectorization.
 Has redundant instructions for unnecessary

masking (with ki=11...1) and zero-clear of
destination of gather (& scatter).

Regularity vs Irregularity
How Vectorized (2/2)

 for a[]+=b[]

REV-A 2017: © 2016 H. Nakashima

a[i]+=b[i] a[i]+=b[xb[i]] a[xa[i]]+=b[xb[i]]

vmovups a[i]
vaddpd b[i]
vmovupd a[i]

vmovdqu xb[i]
vmovups a[i]
vgatherdpd b[]
vaddpd
vmovupd a[i]

vmovdqu xb[i]
vgatherdpd b[]
vmovdqu xa[i]
vpconflictd
vgatherdpd a[]
vpmovzxdq
vptestmq
vaddp
kmovw
testl
je
conflict case
vscatterdpd a[i]

 ≈ c[]=a[]+b[] ≈ c[]=a[]+b[] Needs conflict check
in case that xa[] has
duplication.

Regularity vs Irregularity
How Fast & Slow

 64-core (&thread) execution on KNL

REV-A 2017: © 2016 H. Nakashima

0

50

100

150

200

250 5000

4000

3000

2000

1000

0 0

25

50

75

100

125 2500

2000

1500

1000

500

0

0

5

10

15

20

25 500

400

300

200

100

0

G
Fl

op
s

G
B

/s
ec

n = 800 x 64
(on L1)

n = 8000 x 64
(on L2)

n = 800000 x 64
A B C D E F

 A:c[i]=a[i]+b[i]
 B:c[i]=a[xa[i]]+b[xb[i]]
 C:c[xc[i]]=a[xa[i]]+b[xb[i]]
 D:a[i]+=b[i]
 E: a[i]+=b[xb[i]]
 F: a[xa[i]]+=b[xb[i]]
 Severe slowdown in on-cache cases

while almost-peak B/W is exerted in
off-cache case.

x5.8 x8.6

x2.6 x6.9
x3.2 x3.2

A B C D E F

x2.7 x5.0

x1.3 x1.5

x1.3 x1.6

xa[i]=xb[i]=xc[i]=i

Regularity vs Irregularity
Why so Slow

 On-Cache Case
 SIMD mechanism relies on wide access to a cache

line too heavily to perform a set of small-size
loads/stores for a gather/scatter efficiently.

 Short latency of L1 access does not allow to
coalesce multiple accesses of gather/scatter
effectively even when they targets on a single line.

Gather/scatter severely degrades the effect of our
effort of SIMD- and cache-aware implementation.
 SIMD-aware: x3.1 x2.2-x2.0 (for a[]+=b[])
 cache-aware: x5.9 x2.9-x1.4

c.f. SX-ACE’s ADB, software-controlled non-
coherent cache, is accessible in word-
granularity and has load-coalescing mechanism.

REV-A 2017: © 2016 H. Nakashima

Regularity vs Irregularity
Why not so Slow

 Off-Cache Case
 As far as gather/scatter accesses have reasonable

spatial locality, last-level cache (L2) effectively
coalesces multiple non-temporally-local accesses
into a single cache miss.

 Memory controller also effectively coalesces
cache-missing accesses from many cores into a
series of not-so-random accesses to memory
(MCDRAM) to exploit its large bandwidth.

Strongly discourage people from improving
access locality or eliminating indirection because
one single effort is not very effective.
 only improving locality: x1.4 (for a[]+=b[])
 only eliminating indirection: x1.6
 both: x9.4 >> 1.4 x 1.6

REV-A 2017: © 2016 H. Nakashima

Regularity vs Irregularity
Other Sources of Irregularity

 for(a=ah,b=bh,c=ch; a&&b&&c;
 a=a->n,b=b->n,c=c->n) c->v=a->v+b->v;

 Even with a smart complier, you have a scalar
pointer chasing followed by a vectorized
gather/scatter.

 for(i=0;i<n;i++)
 if (a[i]<0) c[i]=some_func(a[i],b[i]);
 else c[i]=a[i]+b[i];

 Even with a smart complier, you could have non-
vectorized code instead of vectorized else-part
for the cases of a[i]>=0 for all lanes even if a[i]
is usually (or always) non-negative.

REV-A 2017: © 2016 H. Nakashima

Regularity: How to Achieve?
 Fundamentals

 Use arrays instead of linked lists.
 Eliminate indexing arrays/functions.
 Eliminate unbalanced conditionals.

 In Addition
 Show the regularity apparently to your compiler.
 Combine cache-awareness to make regularization

really effective.
 However ...

 How can I regularize my program which operates
on irregular data such as sparse matrices and
sets of objects?

REV-A 2017: © 2016 H. Nakashima

Regularity in Irregular Data:
Sparse Matrix in CRS

 CRS Matrix Vector Multiply y=A*x
for(i=0;i<n;i++){ y[i]=0;
for(j=A.row[i];j<A.row[i+1];j++)
y[i]+=A.val[j]*x[A.col[j]];

}
 Gather on x[] is inefficient.
 A.row[i+1]-A.row[i] is usually small (up to a

few tens) to make the overhead of prologue &
epilogue large. (c.f. fixing it with zero-padding may
improve performance.)

 Cannot We Find Regularity?
 If A has many k-diagonal sequences;
 We may represent A as a set of

k-diagonal sequences (plus
exceptional non-zeros).

REV-A 2017: © 2016 H. Nakashima

gather

exceptionally
≠ 0 = 0

Regularity in Irregular Data:
Sparse Matrix in k-Diagonal Form

 k-Diagonal Matrix Vector Multiply y=A*x
for(i=0;i<n;i++) y[i]=0;
for(d=0;i<A.ndiag;d++){

for(i=A.drow[d],j=A.dcol[d],k=A.dval[d];
k<A.dval[d+1]; i++,j++,k++)

y[i]+=A.val[k]*x[j];
} // then operate on exceptional non-zeros
 drow[d],dcol[d],dval[d]:

row, column and index of val[] of the head of the
d-th k-diagonal sequence.

 Can We Find such Sequences?
 Easy for cubic structured meshes.
 How can we find them in unstructured

meshes of triangles or tetrahedrons?

REV-A 2017: © 2016 H. Nakashima

exceptionally
≠ 0 = 0

Regularity in Irregular Data:
Finding k-Diagonal Sequences

 Regularity?

 Yes!! (though No in general)

REV-A 2017: © 2016 H. Nakashima

i
i + k

i + 7

i + k + 6

±1-diagonal
±k-diagonal
±(k-1)-diagonal

●

●

Regularity in Irregular Data:
How Efficient ?

REV-A 2017: © 2016 H. Nakashima

 y=A*x on KNL with 64 cores (threads)

0

10

20

30

40

50

60

70

80
stencil k-diagonal CRS

G
Fl

op
s

100M vector of
2D triangular mesh

16M vector of
3D cubic mesh

x3.3 x3.4

Regularity in PIC Simulation:
Fundamental Irregularity in PIC

 For each p at xp in a cell whose
vertices are at δxp ;
 Update vp by Lorentz force determined by E and B

at δxp, and then update xp by vp.
 Add the contribution of p’s motion to J at δxp.
 E[][][], B[][][], J[][][] are accessed by

xp +{0,1}3 with gather/scatter.

REV-A 2017: © 2016 H. Nakashima

)(),(pp xBxE δδ))((pp vxJ −δ)(pxJ δ
ΩΩ ~,

Regularity in PIC Simulation:
Regularize by Particle Binning

 Let each cell c have the set (bin) of all
particles in it.

 Scalarize E/B/J accessed by all p in c.

for(c in cells){
{sE}=Earound(c); {sB}=Baround(c);
for(p in c) v[p]+=lorentz(p,{sE},{sB});
{sJ}=0;
for(p in c)
{{sJ}+=scatter(p); x[p]+=v[p];}
Jaround(c)+={sJ};
for(p in c) migrate(p);

}
for(c in cells){
{sJ}=0; for(p in c) {sJ}+=scatter(p);
Jaround(c)+={sJ};

}

REV-A 2017: © 2016 H. Nakashima

If x[] and v[] are
simple arrays,
vectorized well
without gather/
scatter of E/B/J.

Regularity in PIC Simulation:
Regularized Bin Management

 Instead of Irregular Structure/Procedure
 Such as linked list or batched radix sort.

 On-the-Fly Sort on Gapped Arrays

REV-A 2017: © 2016 H. Nakashima

c1 c2

xp

vp

c1's bin c2's bingap

1D-SOA of
particles

3D-AOS
of cells

 Record direction dp∈{-1,0,1}3 of
inter-cell migration for all p in c.

 Skip p s.t. dp =(0,0,0).
 Migrate p s.t. dp ≠(0,0,0) to the gap

of the destination bin.
 Fill the vacancy by the last

particle of c.
 Migration cannot be vectorized but

for a few particles.
 Work efficiently unless overflow.

●

●

Regularity in PIC Simulation:
Bin Overflow: Cost for Regularity

 If a gap is exhausted
 Move overflown particle into a buffer and process

all particles in the buffer without binning, until e.g.
the cumulative processing cost becomes too large.

 Reduce frequency of bin rearrangement.
 When no longer we can keep particles

in the buffer
 Resize gaps not only to enlarge them for cells

(nearly) overflown but also to keep them as large
as possible.

 Cope with oscillatory repletion/depletion of bins.
 Perform in-place multithreaded SIMD-vectorizable

shift of bins according to the new gap sizes.

REV-A 2017: © 2016 H. Nakashima

Regularity in PIC Simulation:
How Efficient ?

 1-node
(106 p/s)

 Multi-node
(106 p/s·node)

REV-A 2017: © 2016 H. Nakashima

peak
TFlops

binning
yes no

XC40 (KNL) 3.05 1179 ---
XC30 (Haswell) 1.03 590 291
XC30 (KNC) 1.01 391 57
XE6 (Abu Dhabi) 0.32 --- 123

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64
0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64

XC40 (KNL)

XC30 (Haswell)

XC30 (KNC)

XE6

Uniform Distribution

Very Congested
Distribution

Conclusions
 What I’ve talked

 Importance of regularity for recent processors
having wide SIMD mechanisms.

 How to find and exploit in-practice regularity in
in-general irregular data/procedures.

 What I haven’t talked
 How large effort we have to make for the

exploitation of in-practice regularity.
 70+% of my PIC code of 2,622 C lines are for non-kernel

operations for regularization (e.g., overflow handling).
 We need regularization libraries to manipulate in-

general irregular data (not their structures), i.e.,
 Sparse matrices rather than CRS form of them.
 Sets rather than their linked-list representation.

REV-A 2017: © 2016 H. Nakashima

REV-A 2017: © 2016 H. Nakashima

backup
REV-A 2017: © 2016 H. Nakashima

±k 0 1 2 3 4 5 6 7 8 except. ≠0

length
(except.=0)

47 45(9) 02 05 07 09 05(0)
11(1)

25(1) 14 6

	Finding Regularity in Problems with Irregularity
	Contents
	Players Lineup in HPC Games
	SIMD: Hometown of Regularity
	SIMD: How Widen?
	SIMD: How Working in Kyoto?
	Regularity vs Irregularity�Simple Examples
	Regularity vs Irregularity�How Vectorized (1/2)
	Regularity vs Irregularity�How Vectorized (2/2)
	Regularity vs Irregularity�How Fast & Slow
	Regularity vs Irregularity�Why so Slow
	Regularity vs Irregularity�Why not so Slow
	Regularity vs Irregularity�Other Sources of Irregularity
	Regularity: How to Achieve?
	Regularity in Irregular Data:�Sparse Matrix in CRS
	Regularity in Irregular Data:�Sparse Matrix in k-Diagonal Form
	Regularity in Irregular Data:�Finding k-Diagonal Sequences
	Regularity in Irregular Data:�How Efficient ?
	Regularity in PIC Simulation:�Fundamental Irregularity in PIC
	Regularity in PIC Simulation:�Regularize by Particle Binning
	Regularity in PIC Simulation:�Regularized Bin Management
	Regularity in PIC Simulation:�Bin Overflow: Cost for Regularity
	Regularity in PIC Simulation:�How Efficient ?
	Conclusions
	スライド番号 25
	backup

