Ity In Problems
gularity

Hiroshi Nakashima
(ACCMS, Kyoto University)

. REV-A 2017: © 2016 H. Nakashima
N
N

= Contents

= Players Lineup in HPC Games

= Regularity vs Irregularity with SIMD
= SIMD @ Intel and @ Kyoto U.
= Just One Example of Regular Data/Procedures
= Many Examples of Irregular Data/Procedures
= Regularity in Irregular Data
= An Idea to Make Sparse Matrices More Regular
= Regularity in PIC
= How to Make Operations on Particles Regular
= How to Make Sets of Particles Reqgular

= Conclusions

® /\ REV-A 2017: © 2016 H. Nakashima
N

= Players Lineup in HPC Games

—

= Correctness
Without it we cannot earn anything.
» Complexity
O(N?) cannot defeat O(N) in HPC with N>>1.

s Parallelism

Absence of this veteran makes your supercomputer
as slow as a smartphone.

s Locality
High memory wall increases its importance in HPC.

= Regularity

This rookie now controls the game by its ability to
up/down the score by a factor of 10x.

- REV-A 2017: © 2016 H. Nakashima
7 N

/?5\ SIMD: Hometown of Regularity

= double a[],b[1,c[1;
for(i=0;i<n;i++) c[i]=a[i]+b[i];

a[i] a[i+7] b[i] b[i+7] c[i] c[i+7]
[] hovies || Frefeere
VYV Y)¢
VRa VMOVUPD

\
\\
\> >.\ >>>>>>>>

SaS S AN S NS
(D) VADDPD

VRcC

ZEE22XE%)

L

. REV-A 2017: © 2016 H. Nakashima
7N\

= SIMD: How Widen?
s Intel’'s SIMD Architecture

SSE2/3 —NetBurst m SIMD width =FMA mIPC

SSE2/3/4 | Core / Nehalem / Westmere
AVX | sandy Bridge / vy Bridge

Vel KNC
AVX-2 T B Haswell / Broadwell
AVX-512 — _KNL/SIKyIake
1 2 4 8 16 32

DP-FLOP/cycle

AN

REV-A 2017: © 2016 H. Nakashima

75\ SIMD: How Working in Kyoto?

camphor 2%
¢ __

==~ XC40

@ted Xeon Phi 7250 (KNL)
1.4GHzx 8 x4 x68 x1 x 1800
= 5.48PFlops

-)
7

\lDATAWAF}F’ 230TB

J

Laurel 2 :

(== CS400 2800XT
@ Xeon E5-2695v4 (Broadwell)
2.1GHzx4 x4 x 18 x2x 850
=1.03PFlops

\

@ned Xeon Phi 5250D (KNC)
dned Xeon E5-2670v2 (lvy Bridge)
(1.1GHzx8x2x68x1 +

2.5GHzx4x2x10x1)x 482
\ .= 0.58PFlops

cinnamon 2

[==~ CS400 4840X
@D Xeon E7-8880v3 (Haswell)
2.3GHzx4x4x18x4x16
= 0.04PFlops

AN

-
Omni-Path (12.1GB/s¢link, BB= 5.15TB/s

J

Storage

>0 ExaScaler

16+8PB
€/ IME 230TB

® /—\ Regularlty VS Irregularlty REV-A 2017: © 2016 H. Nakashima
= = Simple Examples
s for(i=0;i<n;i++) cl[i]=a[i]+b[i];

regular & fast
[HEEEEEEEE EEEEEEEN I“I“I“I“I“I“I“I“I

CITTTTITT+H{TTTTTTTH[TTITITTIT]
= For(1=0;1<n;1++) cli]=a[xa[1]]+b[xb[1]];
irregular in RHS & slow even if xa[1]==xb[1]==1

VVVVV& VVVVVVVVVVVVVVVV& IIIIIIIII
A A A A A A A A

VVYVVVYY
[Elejelelefefefe] |)) () () ()

= For(1=0;1<n;1++) c[xc[i]]=a[xal[1]]+b[xb[i]];
irregular in LHS & very slow even if vectorized

|)) [HEEEEEEE | [()) () ())
VVVVYVYVYY VV& VVVYVVYVYVYY VV& VVVVVYVYY VV&
elefefefefefefe] DR EEEE [elefefefefofo]e]
>
] 1] g |

/\ Regularity vs Irregularity

= How Vectorized (1/2)

= By Intel 17.0.2 for KNL

REV-A 2017: © 2016 H. Nakashima

c[i]=a[1]+b[1] c[i]= c[xc[i1]]=
a[xa[1]]+b[xb[i]] a[xa[1]]+b[xb[i1]]
vmovups af[i] vmovdqu xa[1] vmovdqu xa[i]
vaddpd b[1] vmovdqu xb[1] vmovdqu xb[1]
vmovupd c[1] vgatherdpd af] vmovdqu xc[i]

vgatherdpd DbJ[]
vaddpd
vmovupd cl[i]

vgatherdpd al]
vgatherdpd D[]
vaddpd

vscatterdpd c[i1]

= Overlap of a/b/c is in-
spected for vector-
ization if they are not
restrict-ed

= Two-way unrolled
further.

s a/b/c must be restrict-ed for vectorization.

» Has redundant instructions for unnecessary
masking (with ki=11. ..
destination of gather (& scatter).

1) and zero-clear of

/\ Regularity vs Irregularity

= How Vectorized (2/2)

5 for a[1+=Db[]

REV-A 2017: © 2016 H. Nakashima

a[i]+=b[i]

a[i]+=b[xb[i1]

a[xa[i1]+=b[xb[i1]

vmovups af[i]
vaddpd Db[i]
vmovupd af[1i]

vmovdqu xb[1]
vmovups a[i]
vgatherdpd b[]
vaddpd

vmovupd a[i]

vmovdqu xb[1]
vgatherdpd D[]
vmovdqu xal[i]

vpconflictd
vgatherdpd af]
vpmovzxdq
vptestmq

vaddp

kmovw

testl

je

conflict case
vscatterdpd afi]

==c[]=al]l+bl]

==c[]=al]l+bl]

= Needs conflict check
in case that xa[] has
duplication.

/—\ Regularlty \VASS Irregularlty REV-A 2017: © 2016 H. Nakashima
/\ How Fast & Slow Cxa[i]=xb[i]=xc[i]=i

/"\

s 64-core (&thread) execution on KNL

250 5000 125 2500
n = 800 x 64 n = 8000 x 64
200 (on L1) 4000 100 (on L2) 2000
D 150 3000 § 75 1500
= x5.8 x8.6 = x3 2 x3 2 x2 7 X5.0
) 100 2000) 50 1000
x2 6 x6 9
50 1000 25 % % \ 4 500
\4
LN] L | :
A B A F
25 500 -
n—800000x64 1 2Bl 6 B A:c[l]—a[]+b[]
20 ' | 400 B:cli]=a[xa[1]]+b[xb[1]]
C.c[xc[i]])=a[xa[1]]+b[xb[1]]
15 X1.3gx1.5 300 D:a[i]+=b[i]
l E:a[1]+=b[xb[1]]
10 20 Fra[xa[i]1+=b[xb[i]]
5 100 = Severe slowdown in on-cache cases
while almost-peak B/W is exerted in
0 0

off-cache case.

/—\ Regularlty VS Irregularlty REV-A 2017: © 2016 H. Nakashima

= =~ Why so Slow

s On-Cache Case

= SIMD mechanism relies on wide access to a cache
line too heavily to perform a set of small-size
loads/stores for a gather/scatter efficiently.

= Short latency of L1 access does not allow to
coalesce multiple accesses of gather/scatter
effectively even when they targets on a single line.

> Gather/scatter severely degrades the effect of our
effort of SIMD- and cache-aware implementation.
= SIMD-aware: x3.1=» x2.2-x2.0 (for a[]+=b[])

=« cache-aware: x5.9 =% x2.9-x1.4

c.f. SX-ACE’'s ADB, software-controlled non-
coherent cache, is accessible in word-
granularity and has load-coalescing mechanism.

/—\ Regularlty VS Irregularlty REV-A 2017: © 2016 H. Nakashima

= =~ Why not so Slow

s Off-Cache Case

= As far as gather/scatter accesses have reasonable
spatial locality, last-level cache (L2) effectively
coalesces multiple non-temporally-local accesses
Into a single cache miss.

= Memory controller also effectively coalesces
cache-missing accesses from many cores into a
series of not-so-random accesses to memory
(MCDRAM) to exploit its large bandwidth.

> Strongly discourage people from improving
access locality or eliminating indirection because

one single effort is not very effective.
= only improving locality: x1.4 (for a[]+=b[])
= only eliminating indirection: x1.6
= both: X9.4>>14x1.6

REV-A 2017: © 2016 H. Nakashima

/\ Regularity vs Irregularity
= Other Sources of Irregularity

o for(a—ah,b—bh,c—ch, a&&b&é&c;
a=a->n,b=b->n,c=c->n) c->v=a->v+b->v;

= Even with a smart complier, you have a scalar
pointer chasing followed by a vectorized
gather/scatter.

= for(1=0;1<n;1++)

i1IT (a[1]<0) c[i1]=some func(ali1],b[1]);
else cli]=al1]+b[1];

= Even with a smart complier, you could have non-
vectorized code instead of vectorized else-part

for the cases of a[1]>=0 for all lanes even if a[1]
Is usually (or always) non-negative.

. REV-A 2017: © 2016 H. Nakashima
N
N

= Regularity: How to Achieve?

—~

» Fundamentals

= Use arrays instead of linked lists.
= Eliminate indexing arrays/functions.
= Eliminate unbalanced conditionals.

= INn Addition

= Show the regularity apparently to your compiler.

= Combine cache-awareness to make regularization
really effective.

= However ...

= How can I regularize my program which operates
on irregular data such as sparse matrices and
sets of objects?

C__%\\ Regularity in Irregular Data: REV-A 2017: © 2016 H. Nakashima
= Sparse Matrix in CRS

= CRS Matrix Vector Multiply y=A*x
for(i1=0;i<n;i1++){ y[1]=0;
for(J=A.row[1];J<A.row[i+1];J++)
vii]+=A_val[jJ]*x[A.col[}1];

}

= Gather on x[] is inefficient.

s Acrow[i1+1]-A.row[1] is usually small (up to a
few tens) to make the overhead of prologue &
epilogue large. (c.f. fixing it with zero-padding may

Improve performance.) exceptionally
l#g =0

= Cannot We Find Regularity?
= If Ahas many k-diagonal sequences;«
= We may represent A as a set of
k-diagonal sequences (plus
exceptional non-zeros).

REV-A 2017: © 2016 H. Nakashima

~— Regularity in Irregular Data:
= Sparse Matrix in k~-Diagonal Form

= k-Diagonal Matrix Vector Multiply y=A*Xx
for(1=0;1<n;1++) y[1]=0;
for(d=0;1<A.ndiag;d++){
for(1=A_.drow|[d],j=A.dcol[d],k=A_dval[d];
k<A_.dval[d+1]; 1++,j++,K++)
vit]+=A.val[k]*x[]];
} 7/ then operate on exceptional non-zeros
= drow[d],dcol[d],dval[d]:
row, column and index of val[] of the head of the
d-th k-diagonal sequence. exceptionally

= Can We Find such Sequences? s

= Easy for cubic structured meshes.
= How can we find them in unstructured
meshes of triangles or tetrahedrons?

¢ —~ Regularity In Irregular Data:

—~

= Regularity? | +7

= Yes!! (though No in general)

= Finding k-Diagonal Sequences

/\ Regularlty In Irregular Data REV-A 2017: © 2016 H. Nakashima
2 How Efficient ?

’-\

= Y=A*X on KNL with 64 cores (threads)

80

mstencil mk-diagonal mCRS

70

60

50

40

GFlops

30

20

10

0

100M vector of 16M vector of
2D triangular mesh 3D cubic mesh

~— Regularity In PIC Simulation: " 20n e e B tsadma
= Fundamental Irregularity in PIC

’—'\

= For each p at x, In a cell whose
vertices are at éx,, ;

= Update v, by Lorentz force determined by E and B
at ox,,, and then update x, by v,,.

= Add the contribution of p's motion to J at &x,,.

= E[1L1L1, BL1L1L1, JL1L1L] are accessed by
[x,] +{0,1}3 with gather/scatter.

E(5x,),B(5x,) J(5(x, -v,)) J6x,)

e

P N S /
7 N / \ f \
Y= v S / S / / \
\ AN

~— Regularity In PIC Simulation: " 20n e e B tsadma
= Regularize by Particle Binning

’—'\

= Let each cell ¢ have the set (bin) of all
particles in It.

= Scalarize E/B/J accessed by all pin c.
for(c 1n cells){

{sE}=Earound(c); {sB}=Baround(c);
for(p 1n c¢) v[p]+=lorentz(p,{sE},.{sB});

{sJ}=0;
for(p 1n ©) \/If x[] and v[] are\
{{sJ}+=scatter(p); x[pl+=vIp]l;} | simple arrays,
Jaround(c)+={sJ}; \ vectorized well
for(p in ¢) migrate(p); without gather/
} scatter of E/B/J.

for(c 1n cells){ /\

{sJ}=0; Tfor(p In c) {sJ}+=scatter(p);
Jaround(c)+={sJ};
by

[) /—\ Regularlty In PIC Slmulatlon REV-A 2017: © 2016 H. Nakashima
= Regularized Bin Management

f—'\

= Instead of Irregular Structure/Procedure
= Such as linked list or batched radix sort.

= On-the-Fly Sort on Gapped Arrays

3D-AOS
of cells HEEEEEEEEEEENNNNESN e .
= Record direction d,e{-1,0,1}° of
c, [Cs inter-cell migration for all p in c.
// A = Skip p s.t. d;,=(0,0,0).
L = Migrate p s.t. d, #(0,0,0) to the gap
1%;332; EL) N \ of the destinati%n bin.
{ = Fill the vacancy by the last
particle of c.
Vi { = Migration cannot be vectorized but
c,'s bintﬁ)> C,'s bin for a few particles.

= Work efficiently unless overflow.

~— Regularity In PIC Simulation: " 20n e e B tsadma
= Bin Overflow: Cost for Regularity

f—'\

= If a gap is exhausted

= Move overflown particle into a buffer and process
all particles in the buffer without binning, until e.g.
the cumulative processing cost becomes too large.

€ Reduce frequency of bin rearrangement.

= When no longer we can keep particles
In the buffer

= Resize gaps not only to enlarge them for cells
(nearly) overflown but also to keep them as large
as possible.

€ Cope with oscillatory repletion/depletion of bins.

= Perform in-place multithreaded SIMD-vectorizable
shift of bins according to the new gap sizes.

/—\ Regularlty In PIC Slmulatlon REV-A 2017: © 2016 H. Nakashima
2 How Efficient ?

’—\

i binning
ivode [

6
(10° p/s) XC40 (KNL) 3.05 1179 -
XC30 (Haswell) 1.03 590 291
- XC30 (KNC 1.01 391 57
= Multi-node (KNC)
XE6 (Abu Dhabi) 0.32 - 123
(10° p/s-node)
1400 XC40 (KND) 1400
1200 | 1200
1000 \-\'_'\./' 1000 Very Congested ||
. L \ Distribution
800 Uniform Distribution | 800

s00 . XC30 (Haswell) 600 *\
400 | XC30 (KNC) wo L & —
200 M 200 - .

0 T T T T T T O T T T T T T
1 2 4 8 16 32 64 1 2 4 8 16 32 64

. REV-A 2017: © 2016 H. Nakashima
N
N

= Conclusions

= What I've talked

= Importance of regularity for recent processors
having wide SIMD mechanisms.

= How to find and exploit in-practice regularity in
In-general irregular data/procedures.

= What | haven't talked

= How large effort we have to make for the
exploitation of in-practice regularity.
= 7/0+% of my PIC code of 2,622 C lines are for non-kernel
operations for regularization (e.g., overflow handling).
= We need regularization libraries to manipulate in-
general irregular data (not their structures), i.e.,
= Sparse matrices rather than CRS form of them.
« Sets rather than their linked-list representation.

REV-A 2017: © 2016 H. Nakashima

	Finding Regularity in Problems with Irregularity
	Contents
	Players Lineup in HPC Games
	SIMD: Hometown of Regularity
	SIMD: How Widen?
	SIMD: How Working in Kyoto?
	Regularity vs Irregularity�Simple Examples
	Regularity vs Irregularity�How Vectorized (1/2)
	Regularity vs Irregularity�How Vectorized (2/2)
	Regularity vs Irregularity�How Fast & Slow
	Regularity vs Irregularity�Why so Slow
	Regularity vs Irregularity�Why not so Slow
	Regularity vs Irregularity�Other Sources of Irregularity
	Regularity: How to Achieve?
	Regularity in Irregular Data:�Sparse Matrix in CRS
	Regularity in Irregular Data:�Sparse Matrix in k-Diagonal Form
	Regularity in Irregular Data:�Finding k-Diagonal Sequences
	Regularity in Irregular Data:�How Efficient ?
	Regularity in PIC Simulation:�Fundamental Irregularity in PIC
	Regularity in PIC Simulation:�Regularize by Particle Binning
	Regularity in PIC Simulation:�Regularized Bin Management
	Regularity in PIC Simulation:�Bin Overflow: Cost for Regularity
	Regularity in PIC Simulation:�How Efficient ?
	Conclusions
	スライド番号 25
	backup

