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Application Background

We have a successful HDR Camera App for 
Android mobile devices

• Top 10 in Paid Camera Apps on Google Play since 
2013

• Computational Photography Native Library
• CRF Estimation

• Image Alignment

• Frame Merging

• Tonemapping

• Originally written in ARMv7 NEON Assembly 
Language
• Hand optimized with vector instructions



12 MP Image



Same scene 33ms later



Image Alignment



Merged Image (6 frames)



Original Image Detail



Merged Image Detail



How to Vectorize?

C++ with Vectorizing Compiler
• Compilers are still bad at finding opportunities to 

vectorize imperative languages 

• Side effects

• Bounds inference is difficult

Assembly Language
• Very Architecture dependent

• Time consuming

Compiler Intrinsics
• Architecture dependent

• Low Level

Halide
• Effective architecture independent vectorization



What is Halide?

A Domain Specific Language (DSL) for image 
processing

Developed by MIT from 2012 
• http://halide-lang.org

Produces highly efficient parallel, vectorized 
code. 

Claims to produce faster code than hand 
optimized assembly!

Uses LLVM with backends for:
• X86, ARMv7, ARMv8, CUDA, OpenGL, Hexagon

• Windows, OSX, Linux, Android, iOS



Parts of a Halide program

Variables – range is determined by bounds inference
Var x,y;

Expressions
Expr lum=77*red+150*green+29*blue;

Functions
Func sum_x;
sum_x(x,y)=sum(base(x * size + rTile, y))/size;

Reduction Domains – iterate over a specified range
RDom rTile(0, size);

Tuples – simple data structure indexed with []
Tuple t={xmin,ymin};
xoffset=t[0];



The algorithm is decoupled from 
its implementation

Each function can be scheduled separately
• Parallelize

• Vectorize

• Reorder

• Tile

• Unroll

• Split

• Compute_at

• Reorder

The schedule is guaranteed not to change the 
result

Allows you to easily exploit multiple cores, cache 
memory architecture and SIMD instructions



Halide Example - Image Histogram

        RDom rx(0, input.width());
        RDom ry(0, input.height());
        Func row_hist,hist;

      // the algorithm
        row_hist(x, y) = 0; // create a histogram
        row_hist(input(rx, y), y) += 1; // for each row
   
        hist(x) = sum(row_hist(x, ry)); // add them together

     // the schedule     
        row_hist.compute_root().vectorize(x, 8).parallel(y);
        row_hist.update().parallel(y);
        hist.compute_root().vectorize(x, 8);



Halide Program for local 
alignment in the y direction

ImageParam base,other; // input images
Func sumbase_x,sumother_x; // tile row sums
RDom rTile(0, 32); // domain for tile sum
RDom rExt(0,32); // comparison extent
RDom rComp(-16, 32); // comparison offset

// the alogrithm
sumbase_x(x, y) = sum(base(x*32+rTile,y))/32;
sumother_x(x, y) = sum(other(x*32+rTile,y))/32;
Expr sim_x = absd(sumbase_x(x, y*32+rExty),
      sumother_x(x,y*32+rComp+rExty));
Tuple min_y = argmin3(rComp,sum(rExty,sim_x));



Vectorize

vectorize(N,TailStrategy)

N is the vector size, can be larger than the 
natural size.
What if the Image width is not a multiple of N?
Make sure image is padded at end
Could compute some pixels twice
Only a problem if input image is reused for 
output.
Use TailStrategy::GuardWithIf in this case



Image Processing Pipeline (3 frames)



Performance Measurement

Each function can be profiled separately, e.g.

total time: 56.326656ms samples: 849 runs: 6 time/run: 9.387776 ms 
average threads used: 6.621908 
heap allocations: 96 peak heap usage: 144368 bytes 
 overhead:              0.076ms   (0%)
 sumbase_y:             0.131ms   (1%)
 sum$1:                 0.179ms   (1%)
 sumother_y:            0.215ms   (2%)
 sum$3:                 1.454ms   (15%)
 f:                     3.562ms   (37%)
 sum$4:                 0.211ms   (2%)
 sumbase_x:             0.671ms   (7%)
 sum:                   0.493ms   (5%)
 sumother_x:            0.771ms   (8%)
 sum$2:                 1.183ms   (12%)
 f$1:                   0.160ms   (1%)
 sum$5:                 0.277ms   (2%)
 f0:                    0.000ms   (0%)



Performance Comparison

Stage ARMv7
C++

ARMv7 
NEON

ARMv7 
Halide

ARMv8
Halide

AXV2 
Halide

global
align

81ms 48ms 27ms 34ms 9ms

align - - 74ms 62ms 13ms

merge 354ms 307ms 237ms 172ms 34ms

Tonemap - - 870ms 256ms 26ms



Pipeline Stage Results

Each pipeline stage profiled on 3 architectures
• ARMV7 (32 bit with 128 bit vectors)

• ARMV8 (64 bit with 128 bit vectors)

• Intel AVX2 (64 bit with 256 bit vectors)



Results









Fine Grained Results

Each Halide function in the pipeline can be 
profiled separately.
Global Align: 13 functions
Align: 5 functions
Merge: 2 functions
Tonemap: 5 functions
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HDR Example

The complete Halide HDR pipeline
3 frames 
12MP
800ms processing time



Image 1
Correctly Exposed



Image 2
Underexposed



Image 3
Overexposed



Output



Conclusions

Performance is generally proportional to number 
of hardware vector ALUs.
Works best if vector size is > 2. 
No penalty for using a larger vector size than the 
natural vector size.
But:
Steep learning curve
Schedule optimization takes time
Not applicable to all domains
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