
Halide Vectorization for Android
Photography Applications –

a Case Study

Martin Johnson & Daniel Playne
INMS (Computer Science)

Massey University
Auckland, New Zealand

Application Background

We have a successful HDR Camera App for
Android mobile devices

• Top 10 in Paid Camera Apps on Google Play since
2013

• Computational Photography Native Library
• CRF Estimation

• Image Alignment

• Frame Merging

• Tonemapping

• Originally written in ARMv7 NEON Assembly
Language
• Hand optimized with vector instructions

12 MP Image

Same scene 33ms later

Image Alignment

Merged Image (6 frames)

Original Image Detail

Merged Image Detail

How to Vectorize?

C++ with Vectorizing Compiler
• Compilers are still bad at finding opportunities to

vectorize imperative languages

• Side effects

• Bounds inference is difficult

Assembly Language
• Very Architecture dependent

• Time consuming

Compiler Intrinsics
• Architecture dependent

• Low Level

Halide
• Effective architecture independent vectorization

What is Halide?

A Domain Specific Language (DSL) for image
processing

Developed by MIT from 2012
• http://halide-lang.org

Produces highly efficient parallel, vectorized
code.

Claims to produce faster code than hand
optimized assembly!

Uses LLVM with backends for:
• X86, ARMv7, ARMv8, CUDA, OpenGL, Hexagon

• Windows, OSX, Linux, Android, iOS

Parts of a Halide program

Variables – range is determined by bounds inference
Var x,y;

Expressions
Expr lum=77*red+150*green+29*blue;

Functions
Func sum_x;
sum_x(x,y)=sum(base(x * size + rTile, y))/size;

Reduction Domains – iterate over a specified range
RDom rTile(0, size);

Tuples – simple data structure indexed with []
Tuple t={xmin,ymin};
xoffset=t[0];

The algorithm is decoupled from
its implementation

Each function can be scheduled separately
• Parallelize

• Vectorize

• Reorder

• Tile

• Unroll

• Split

• Compute_at

• Reorder

The schedule is guaranteed not to change the
result

Allows you to easily exploit multiple cores, cache
memory architecture and SIMD instructions

Halide Example - Image Histogram

 RDom rx(0, input.width());
 RDom ry(0, input.height());
 Func row_hist,hist;

 // the algorithm
 row_hist(x, y) = 0; // create a histogram
 row_hist(input(rx, y), y) += 1; // for each row

 hist(x) = sum(row_hist(x, ry)); // add them together

 // the schedule
 row_hist.compute_root().vectorize(x, 8).parallel(y);
 row_hist.update().parallel(y);
 hist.compute_root().vectorize(x, 8);

Halide Program for local
alignment in the y direction

ImageParam base,other; // input images
Func sumbase_x,sumother_x; // tile row sums
RDom rTile(0, 32); // domain for tile sum
RDom rExt(0,32); // comparison extent
RDom rComp(-16, 32); // comparison offset

// the alogrithm
sumbase_x(x, y) = sum(base(x*32+rTile,y))/32;
sumother_x(x, y) = sum(other(x*32+rTile,y))/32;
Expr sim_x = absd(sumbase_x(x, y*32+rExty),
 sumother_x(x,y*32+rComp+rExty));
Tuple min_y = argmin3(rComp,sum(rExty,sim_x));

Vectorize

vectorize(N,TailStrategy)

N is the vector size, can be larger than the
natural size.
What if the Image width is not a multiple of N?
Make sure image is padded at end
Could compute some pixels twice
Only a problem if input image is reused for
output.
Use TailStrategy::GuardWithIf in this case

Image Processing Pipeline (3 frames)

Performance Measurement

Each function can be profiled separately, e.g.

total time: 56.326656ms samples: 849 runs: 6 time/run: 9.387776 ms
average threads used: 6.621908
heap allocations: 96 peak heap usage: 144368 bytes
 overhead: 0.076ms (0%)
 sumbase_y: 0.131ms (1%)
 sum$1: 0.179ms (1%)
 sumother_y: 0.215ms (2%)
 sum$3: 1.454ms (15%)
 f: 3.562ms (37%)
 sum$4: 0.211ms (2%)
 sumbase_x: 0.671ms (7%)
 sum: 0.493ms (5%)
 sumother_x: 0.771ms (8%)
 sum$2: 1.183ms (12%)
 f$1: 0.160ms (1%)
 sum$5: 0.277ms (2%)
 f0: 0.000ms (0%)

Performance Comparison

Stage ARMv7
C++

ARMv7
NEON

ARMv7
Halide

ARMv8
Halide

AXV2
Halide

global
align

81ms 48ms 27ms 34ms 9ms

align - - 74ms 62ms 13ms

merge 354ms 307ms 237ms 172ms 34ms

Tonemap - - 870ms 256ms 26ms

Pipeline Stage Results

Each pipeline stage profiled on 3 architectures
• ARMV7 (32 bit with 128 bit vectors)

• ARMV8 (64 bit with 128 bit vectors)

• Intel AVX2 (64 bit with 256 bit vectors)

Results

Fine Grained Results

Each Halide function in the pipeline can be
profiled separately.
Global Align: 13 functions
Align: 5 functions
Merge: 2 functions
Tonemap: 5 functions

Row 1 Row 2 Row 3 Row 4

0

2

4

6

8

10

12

Column 1

Column 2

Column 3

HDR Example

The complete Halide HDR pipeline
3 frames
12MP
800ms processing time

Image 1
Correctly Exposed

Image 2
Underexposed

Image 3
Overexposed

Output

Conclusions

Performance is generally proportional to number
of hardware vector ALUs.
Works best if vector size is > 2.
No penalty for using a larger vector size than the
natural vector size.
But:
Steep learning curve
Schedule optimization takes time
Not applicable to all domains

Fin

